Arbeitsgruppe Prof. Hillebrands

Nano-Magnonics Group

The Junior Research Group Nano-Magnonics relocated to the Group of Nanomagnetism and Magnonics at the University of Vienna.

Members

On photo from left to right: David Breitbach (Master student), Steffen Steinert (Master student), Jun.-Prof. Dr. habil. Andrii Chumak (head of the group), Anna Maria Friedel (Master student), Michael Schneider (PhD student), Akira Lentfert Master student), Björn Heinz (PhD student), Dr. Qi Wang (Postdoc).

Open Positions

The group is in the process of formation and young motivated people are welcome to join the team. Currently we have an "open PhD position (University of Vienna)"

 

IEEE Promotional Video: Magnetism and Magnetics Technology in the 21st Century

Aims and scientific goals

A spin wave is a collective excitation of the electron spin system in a magnetic solid. Spin-wave characteristics can be varied by a wide range of parameters which, in combination with a rich choice of linear and non-linear spin-wave properties, renders spin waves excellent objects for the studies of general wave physics. Nowadays, spin waves and their quanta, magnons, are attracting much attention also due to another very ambitious perspective. They are being considered as data carriers in novel computing devices instead of electrons in electronics [Nature Physics 11, 453 (2015)]. The field of science that refers to information transport and processing by spin waves is known as magnonics.

 

The strategic goal of the Nano-magnonics Group is to make a transformative change in the data processing paradigm from traditional electronics to magnonics. A set of recent groundbreaking physical discoveries in the field of magnonics and spintronics form a solid base for this. Moreover, the recent revolutionary progress in the growth of high-quality nanometer-thick Yttrium-Iron-Garnet (YIG) films, the material with the smallest known magnetic losses in nature, and in the patterning of these films, opened a way to the practical development of nano-scale magnonic computing systems.

 

The main aims of the Nano-Magnonics Group are:

- Development of magnonic conduits and two dimensional magnonic circuits with lateral sizes below 100 nm made of magnetic insulators and metals.

- Development of the methodology for excitation, manipulation and detection of fast short-wavelength exchange spin waves in these structures.

- Employment of novel spintronics phenomena like Spin Pumping (SP), Spin Transfer Torque (STT), Spin Hall Effect (SHE), Spin Seebeck Effect (SSE) for the excitation, amplification, and detection of spin waves.

- Realization of proof-of-concept prototypes of nano-scaled magnonic logic circuits.

 

Publications

Submitted

  1. Realization of a nanoscale magnonic directional coupler for all-magnon circuits
    Q. Wang, M. Kewenig, M. Schneider, R. Verba, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, P. Pirro, T. Brächer, A. V. Chumak
    arXiv:1905.12353
  2. Nanoscale spin-wave wake-up receiver
    Q. Wang, T. Brächer, M. Mohseni, B. Hillebrands, V. I. Vasyuchka, A. V. Chumak, P. Pirro
    arXiv:1905.03006
  3. Integrated magnonic half-adder
    Q. Wang, R. Verba, T. Brächer, P. Pirro, A. V. Chumak
    arXiv:1902.02855
  4. Bose-Einstein Condensation of Quasi-Particles by Rapid Cooling
    M. Schneider, T. Brächer, V. Lauer, P. Pirro, D. A. Bozhko, A. A. Serga, H. Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E. Th. Papaioannou, B. Lägel, T. Löber, V. S. Tiberkevich, A. N. Slavin, C. Dubs, B. Hillebrands, and A. V. Chumak
    arXiv:1612.07305

In Press

    Published

    1. Spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides
      Q. Wang, B. Heinz, R. Verba, M. Kewenig, P. Pirro, M. Schneider, T. Meyer, B. Lägel, C. Dubs, T. Bräche, and A. V. Chumak
      Phys. Rev. Lett. 122, 247202 (2019)
    2. The SpinTronicFactory roadmap: a European community view
      B. Dieny, L. Prejbeanu, K. Garello, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. Demokritov, J. Akerman, P. Pirro, C. Adelmann, A. Anane, A. Chumak, A. Hiroata, S. Mangin, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez Diaz, O. Chubykalo-Fesenko, P. Bortolotti
      SciTech Europa (2019)
    3. Backscattering immunity of dipole-exchange magnetostatic surface spin waves
      M. Mohseni, R. Verba, T. Bracher, Q. Wang, D. A. Bozhko, B. Hillebrands, P. Pirro
      Phys. Rev. Lett. 122, 197201 (2019)
    4. Magnon-Fluxon interaction in a ferromagnet/superconductor heterostructure
      O. V. Dobrovolskiy, R. Sachser, T. Brächer, T. Fischer, V. V. Kruglyak, R. V. Vovk, V. A. Shklovskij, M. Huth, B. Hillebrands, and A. V. Chumak
      Nature Physics, 15, 477 (2019)
    5. Optical determination of the exchange stiffness constant in an iron garnet
      K. Matsumoto, T. Brächer, P. Pirro, D. Bozhko, T. Fischer, M. Geilen, F. Heussner, T. Meyer, B. Hillebrands, T. Satoh
      Jpn. J. Appl. Phys. 57, 070308 (2018)
    6. An analog magnon adder for all-magnonic neurons
      T. Brächer and P. Pirro
      Editors pick in the special issue New physics and materials for neuromorphic computation
      J. Appl. Phys. 124, 152119 (2018)
    7. Control of spin-wave propagation using magnetisation gradients
      M. Vogel, R. Aßmann, P. Pirro, A. V. Chumak, B. Hillebrands, and G. von Freymann
      Sci. Rep. 8, 11099 (2018)
    8. Reconfigurable nano-scale spin-wave directional coupler
      Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, and A. V. Chumak
      Sci. Adv. 4, e1701517 (2018)
    9. Voltage-controlled nano-scale reconfigurable magnonic crystal
      Q. Wang, A. V. Chumak, L. Jin, H. Zhang, B. Hillebrands, and Z. Zhong
      Phys. Rev. B 95, 134433 (2017)
    10. Experimental prototype of a spin-wave majority gate
      T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga, I. I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, and A. V. Chumak
      Appl. Phys. Lett. 110, 152401 (2017)
    11. Temporal evolution of auto-oscillations in a YIG/Pt microdisc driven by pulsed spin Hall effect-induced spin-transfer torque
      V. Lauer, M. Schneider, T. Meyer, T. Braecher, P. Pirro, B. Heinz, F. Heussner, B. Laegel, M. C. Onbasli,
      C. A. Ross, B. Hillebrands, and A. V. Chumak
      IEEE Magn. Lett. 8, 3104304 (2017)

    Book chapters and review articles

    1. Magnon spintronics: Fundamentals of magnon-based computing
      A. V. Chumak
      In: Spintronics Handbook: Spin Transport and Magnetism, Second Edition, edited by E. Y. Tsymbal and
      I. Žutić (CRC Press, Boca Raton, Florida), 2018 (submitted)
      arXiv:1901.08934
    2. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale
      T. Brächer, P. Pirro, and B. Hillebrands
      Physics Reports 699, 1 (2017)
    3. Magnonic crystals for data processing
      A. V. Chumak, A. A. Serga, and B. Hillebrands
      J. Phys. D: Appl. Phys. 50, 244001 (2017)
    4. Magnonics: spin waves connecting charges, spins and photons
      A. V. Chumak and H. Schultheiss
      J. Phys. D: Appl. Phys. 50, 300201 (2017)
    5. Magnon spintronics
      A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands
      Nat. Phys. 11, 453 (2015)
    6. Magnetische Materialien nach Maß für die Spintronik
      M. Vogel, A. V. Chumak, B. Hillebrands, and G. von Freymann
      Physik in unserer Zeit 46, 217 (2015)
    7. Magnon spintronics
      A. D. Karenowska, A. V. Chumak, A. A. Serga, and B. Hillebrands
      In: Handbook of Spintronics, Y. Xu, D. D. Awschalom, J. Nitta (eds.),
      Springer, pp. 1505-1549 (2015)
    8. Magnonen für den Computer von Übermorgen
      B. Leven, A. V. Chumak, B. Hillebrands
      Physik in unserer Zeit 46 , 34 (2015)
    9. Topical Review: The 2014 Magnetism Roadmap
      R. L. Stamps, S. Breitkreutz, J. Åkerman, A. V. Chumak, Y. Otani, G. E. W. Bauer, J.-U. Thiele, M. Bowen,
      S. A. Majetich, M. Kläui, I. L. Prejbeanu, B. Dieny, N. M. Dempsey, and B. Hillebrands
      J. Phys. D: Appl. Phys. 47, 333001 (2014)
    10. The dynamic magnonic crystal: New horizons in artificial crystal based signal processing
      A. V. Chumak, A. D. Karenowska, A. A. Serga, and B. Hillebrands
      In: Topics in Applied Physics, Vol.125: Magnonics From Fundamentals to Applications, S. O. Demokritov, and A. N. Slavin (eds.), pp. 243-255
      Springer, Berlin (2013)
    11. YIG magnonics
      A. A. Serga, A. V. Chumak, and B. Hillebrands
      J. Phys. D: Appl. Phys. 43, 264002 (2010)

    Honours and Awards

    • Qi Wang, Chinese government award for outstanding self-finance students abroad, established by the China Scholarship Council, 2019.
    • Martin Kewenig, the best poster at the 3rd International Advanced School on Magnonics 2018 in Kyiv entitled "Realization of a micro-scaled spin-wave majority gate”, September 2018.
    • Michael Schneider, the best poster at the 21st international conference on magnetism in San Francisco entitled "Bose-Einstein Condensation of Magnons by Rapid Cooling”, July 2018.
    • Björn Heinz, membership of Graduate School of Excellence Materials Science in Mainz (MAINZ), 2018.
    Zum Seitenanfang